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LETTER TO THE EDITOR 

The effect of dislocated cracks on collective excitations 
in a superlattice 

Danhong Huang and Shixun Zhou 
Department of Physics, Fudan University, Shanghai, People’s Republic of China 

Received 10 January 1989 

Abstract. The detection of dislocated cracks hidden in a superlattice is a very difficult 
problem of considerable practical importance. The calculation performed here proves that 
splitting of coupled localised edge modes occurs due to the presence of the dislocated cracks. 
The coupled anomalous edge modes may be ‘softened’ in a system which facilitates complete 
Coulomb screening-a superlattice with dislocated cracks, bulk with cracks, etc. This pro- 
vides an approach for detecting dislocated cracks hidden in a superlattice. 

Recently, results were reported on intra-sub-band surface plasmon modes on the 
lateral surface of a half-plane semiconductor superlattice, which were called ‘edge 
modes’ in such a system [ 11. The edge magnetoplasmon modes on a lateral surface of a 
half-plane superlattice with a complex unit cell and the coupled edge magnetoplasmon 
modes in a plane with a ditch have also been studied [2,3].  It has further been pointed 
out that ‘softening’ of the coupled edge plasmons occurs on lateral surfaces of the 
superlattice with cracks as well as in the bulk with cracks [4]. The existence of a magnetic 
field suppresses the softening of these anomalous edge modes. The detection of the 
cracks hidden in the superlattice is a problem of practical importance for surface-wave 
devices. Usually, these cracks are accompanied by dislocations in the superlattice. 

Here we use a hydrodynamic model to study the magnetoplasmon modes in a 
superlattice with dislocated cracks. For generalisation, we use a model in which periodic 
arraysof dislocated 2~ electron layers are stacked along the z direction, and the dislocated 
electron layers are respectively located in the spaces x < 0 (region 1) and x > a (region 
2) separated by a distance a and embedded in a semiconductor background of dielectric 
constant E,. The superlattice spacing is d.  The external magnetic field is along the z 
direction perpendicular to the half-planes. 

Our main interest is the self-consistent oscillation of a charge-compensated 2D elec- 
tron confined between the dislocated layers respectively situated at x < 0, and x > a, 
placed in a perpendicular magnetic field Bz’. Consider a rigid positive background with 
charge density enO and a compressible electron fluid with number density no + n. Let 
nj(r,  t )  and uj(r,  t )  denote, respectively, the small fluctuation in the electron surface 
density and the electron velocity field in the plane of the jth layer. These amplitudes 
satisfy the equation of continuity, Euler’s equations and Poisson’s equation: 

- ionj + no(au jx /ax  + iku,) = 0 

- i o u j x  + (s2/no)anj/ax - ( e / m * ) a q / a x  + w,ujy = 0 
(1) 

(2) 
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-iwv,, + iks2(n,/no) - ik(e/mx)q - w , u I A  = 0 
@*/ax2 + a?/& - k ’ ) q ( x ,  z )  

( 3 )  

= ( 4 n e / ~ , )  2 [ n , ( x > a ( z  - z , ) e ( - x )  + n; ( x ) 6 ( z  - z ,  - v d ) ~ ( x  - a ) ]  (4) 

where 9 is the electrostatic potential, w, is the cyclotron frequency, and 0 < v S 1 is the 
dislocation parameter. O is the step function, and s is an effective compressional wave 
speed. Since the system is translationally invariant along the y direction, the solution 
may be taken as a plane wave or the form exp(iky - iwr), with amplitudes dependent 
on x and z .  A Fourier transform in n of equation (4) leads to the ordinary differential 
equation 
[d2/dz2 - (k2  + kz)]g?(k, ,  Z )  

1 

= ( 4 n e / ~ , )  [ n , ( k , ) ~ ( z  - z , )  + n; (kx)8(z  - 2, - vd)] ( 5 )  
I 

where n,(k,) and n,’ (k,) are the Fourier transforms of n,(x)O(-x)  and n,(x)’O(x - a ) ,  
respectively. Its solution can be expressed as 

dk,, z> + ( W E , )  x ( k ’ ) - ’ [ n , ( k , )  exp(-k’lz - z,I> 
I 

+ n; (k,) exp(-k’lz -zl - vd/)] = 0 (6) 
where k‘ = ( k 2  + k:)”*. The inverse Fourier transform then produces a non-local 
integral relation between the electrostatic potential in the lth plane and the cor- 
responding charge density 

q ( x ,  zi) + ( 4 x e / ~ , )  2 1 dx’ L , ( x  - x ’ ) [ n , ( x ’ ) O ( - x ’ )  + n,! (x’)O(x’ - a ) ]  = 0 (7) 
I 

where 

L , ( x )  =I dk, exp(ik,x)(2k’)-’[exp(-k’lzl - zli)  + exp(-k’lzl - z, - v d l ) ] .  ( 8 )  

In principle, such an integral equation can be solved by using the Wiener-Hopf 
technique [5] .  In analogy with the density fluctuations for a classical one-dimensional 
harmonic lattice, the density fluctuations on the layers at z, = j d  and z1 = j d  + vd can be 
related to those on the zeroth layer with the help of the usual Bloch condition 

n I ( x ’ )  = A , ( x ’ )  exp(iq,jd) (9a) 

nl ( x ’ )  = A 2 ( x ‘ )  exp[iq,(j + v ) d ]  (9b) 
where q2 is the wavevector perpendicular to the plane, and the amplitudes A l ( x ’ )  and 
A 2 ( x ’ )  are independent of the layer levelsj. Then equations (7) and (8) give 

d X >  21)  + ( 2 4 % )  dk, exP(ik,x)(k’)-l[Al(k,)Sl(k,, k ,  42) 

+ A * ( k , ) S , ( k X ,  k ,  4211 = 0 ( l o a )  

(lob) 

( 10c) 

with 

Sl(kX7 k ,  42) = c exP[-k’lzi -jdl + i s z ( j4 l  

S,(k,, k ,  q2) = 2 exp[-k’lzl - j d  - vd/ + iq,(jd + vd)] 

I 

I 
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A 1 , 2 ( k , )  = dx‘  exp(- ik ,~’)A~,~(x’) .  (104  I 
These are independent of the layer levels. As in [13], after a lengthy manipulation, 
we obtain the Fourier component of the exact kernel about equation ( 7 )  using the 
combination of equations (loa)-( 10d) 

L(k , )  = [2(k: + k2)1/2]-1S(kx, k ,  q z )  (11a) 
where the screening function is 

S(k, ,  k ,  q 2 )  = [sinh(k’d) ? {sinh[k’(l - v)d] + sinh(k‘vd) 

+ 2 cos(q,d) sinh[k’(l - v)d] 

x sinh(k’vd)2}J/[cosh(k’d) - cos(q,d)]. (1lb) 
We introduce the approximation used in [6], which we think remains applicable and 

will be seen to work with equal ease [2,3]; then we obtain 

Lo(kx)  = k f ( k  42>/[2k2 + k k ( k  4211 

g(k ,  4 2 )  = 1 - [ k / f ( k  qz)l[df(k, 42)ldkI. 

(12) 

(13) 

where 

The function g ( k ,  qz) characterises the screening correction for edge plasmons, and 
f(k, q2)  = S(k, = 0 ,  k ,  q2). L(k,) and L,(k,) have the same first two terms in a power 
series about k: = 0. The inverse Fourier transform of equation (12) yields the approxi- 
mate kernel 

L,(x) = 2-’f(k, 42)(2g)-1’2 e~p[-(2/g)’/~klxll. (14) 

(d2/dx2 - 2k2/g)q1(x, z l )  = (4nek/~,)fg-’ 2 nj(x) (15) 

(d2/dx2 - 2k2/g)q2(x, z I )  = (4nek/~,)fg-’ ni (x) (x ’ a)  (16) 

(d2/dX2 - 2k2/g)g,3(x, zI) = 0 (17) 

This problem can be reduced to three effective localised Poisson equations 

(x < 0) 
i 

i 

(0 < x < a). 

The remaining steps in the solution are identical with those in [2] and [4]. After combining 
equations (1)-(3) and (15)-(17) with the boundary conditions that Q, and 
acp/dx are continuous and that U ,  vanishes at the boundary, together with the suitable 
boundary behaviour 1x1 +. so, this procedure gives the dispersion relation: 

D w 2{2(2/g) 112 C sinh[ (2/g) ‘12ka] + C2 sinh[ (2/g) 1/2ka] + (2/g) sinh[ (2/g) ”2ku]} 

- 4(2/g) ‘ I 2  D LL) $ o (f/g){ C cosh[ (2/g) ka] 
+ (2/g)1/2 co~h[(2/g)’/~ku]} + 4 ~ J k ( f / g ) ~  

x {(2/g)w2 ~inh[(2/g)”~ka]  - of ~inh[(2/g)”~ka]} = 0 

D 2  = 2 ~ : ( f / g )  + (of - w 2 )  

c2 = 2 [ ( 4 ( f / d  + (l/g)(wf - W2)1/[24(f /d  + (of - w2>1. 

(18) 

(19) 

(20) 

where oi = 2nnoe2k/m* is the bulk 2~ plasma frequency, and 
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An additional set of roots are given by o2 = oz (spurious result of the approximation 
method) and wz = [2oi(f/g) + 0.121 (corresponding to the bulk continuum when a + 0) 

Equation (17) can readily be solved by a numerical method to give the desired 
edge plasmon spectrum and the effect of magnetic field on the frequency of edge 
magnetoplasmons. Although we do not perform such a numerical calculation here, it 
presents no fundamental difficulty. On the basis of the results shown in figure 1 of [4] (in 
which there is no dislocation, or v = 0, l), we can easily predict the features of the 
spectrum. The symbol (k) in equation ( l l b )  stands for the interaction between the 
dislocated chargedlayers, similar to that in the superlattice partly composed of a complex 
unit cell. 

In general, in the absence of a magnetic field, we have four split branches of coupled 
edge plasmon modes when (ka)-' # 0, due to the dislocated cracks hidden in the 
superlattice (v # 0, l ) ,  to be compared with those given in figure 1 of [4]. When v = 0 
or v = 1, however, the splitting vanishes. The splitting reaches a maximum when v = 4. 
In addition, the frequency of anomalous edge modes will decrease rapidly when a 
becomes small; this is called the 'softened' plasmon mode. This can be attributed to the 
dramatic enhancement of the Coulomb screening due to the strong coupling. 

In the presence of a magnetic field, the symmetry with respect to +y and -y  directions 
is broken. When (ka)-l = 0, two degenerate branches will be further split. Moreover, 
the magnetic field will suppress the softening of anomalous edge modes. 

Investigation of the splitting of softened edge plasmon modes in a superlattice with 
dislocated cracks looks attractive, but no reports are available as yet. From the analysis 
given above, we know that the softening of coupled anomalous edge plasmon modes 
will occur in a system which facilitates complete Coulomb screening-a superlattice with 
dislocated cracks, bulk material with cracks, etc. This provides an approach for detecting 
the dislocated cracks hidden in superlattices. The theory for a model in which only 
several charged layers are cracked will be given in a separate paper. 
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